Adaptive Execution Techniques
for
SMT Multiprocessor Systems

Changhee Jung ETRI
Jaejin Lee Seoul National University

E T IR Embedded Software Research Division SIGPL 2005 1

Outline

® SMT multiprocessor architecture
®m Motivation

m Adaptive execution strategies

®m Performance evaluation

m Conclusions

E T IR Embedded Software Research Division SIGPL 2005 2

SMT Multiprocessor Architecture

Processor Processor Processor Processor
Execution Execution Execution Execution
Resources Resources Resources Resources
l LPO I LP1 l LPO LP1 LPO LP1 LPO LP1

| ey ey |
w

l Memory
m [nstructions from different threads execute in parallel

m |dentical instruction streams from multiple threads may degrade performance
= Contend for the same functional unit

m Commercially available: Intel Xeon SMP with hyper-threading

E T IR Embedded Software Research Division SIGPL 2005 3

Our Goal & Approach

®m Improve the performance of
applications that contain conventional
loop-level parallelism

®m Avoid executing some parallel loops in
parallel

®m Dynamically change the number of
threads to run the parallel loops

E T IR Embedded Software Research Division SIGPL 2005 4

Parallel Loop Overheads

] \|

7 r
N B
LT

Serialize the parallel loop that contains small work.

E T IR Embedded Software Research Division SIGPL 2005 5

Parallel Loop Overheads (contd.)

We have to determine
execution mode(# of
threads) seriously.

]

E T IR Embedded Software Research Division SIGPL 2005 6

Execution Environment

4P&8L Execution Mode

Processor Processor Processor Processor
Execution Execution Execution Execution
Resources Resources Resources

*;;;ﬁ

l Memory

E T IR Embedded Software Research Division SIGPL 2005

Adaptive Execution Framework

parallel
program

adaptive
parallel
program

]

compiler
for the SMT - executable
multiprocessor Image

pa

E T IR Embedded Software Research Division SIGPL 2005

E T IR Embedded Software Research Division

Adaptation Schemes

compile-time cost estimation
(static cost estimation model)

run-time co\st estimation
(graduated instructions)

.
4P4L loop selection

(cache misses per instructions)

.
4P8L loop selection
cycles per instruction

4P4L-4P1L adz;ptive execution
(graduated instructions)

.
4PA4L-4P8L adaptive execution

-
4P8L execution time estimation

SIGPL 2005 9

compile-time cost estimation
(static cost estimation model)

N

P1L

Z

Amount of work

E T IR Embedded Software Research Division

4P4L 4P8L

A\

Static Cost Estimation

m Highly inefficient parallel
loops

® A simple model
® Wyoq, = 2 (# of each op* op_cost)
W= n"Wyoqy

mIfW< Wthreshold1 run it
sequentially

®m Use heuristics to determine

Wthreshold

SIGPL 2005 10

Determining W, eshold

.

* -
e * |

0 2000 4000

E T IR Embedded Software Research Division

8000 10000 12000 14000
Compile-Time Estmated Cost

SIGPL 2005

11

compile-time cost estimation

run-time cost estimation
graduated instructions

4P1L

Z

Amount of work

4P4L 4P8L

N\

E T IR Embedded Software Research Division

Run-Time Cost Estimation

B The # of instructions
executed is
proportional to the
workload

® W = the average
number of instructions
executed in each
iteration in the first
invocation

mIfW< Wthreshold1 run it
sequentially in the
following invocations

m Inefficient loops that
cannot be-handled by

12

4P4L Loop Selection

compile-time cost estimation ® Loops that are heavily
(static cost estimation model)
effected by the cache
run-time cost estimation conflicts between two
(graduated instructions) Iogical processors
4P4L loop selection m L2/L3 cache misses per
(cache misses per instructions) . .
instruction (MPI)

® High MPI in 4P4L -

apiL 4paL 4p8L high MPI in 4P8L
7 77 B If MPI > MPly oo FUN
7 7 it in 4PAL
Amount of work i
E TI21 Embedded Software Research Division SIGPL 2005 13

Determining MPl, cshold

1.8

1.6
el \

1.2 - @ o o
:
.

0.8 3 I i . v
0.6 -
0.4 . . .
0.2 r ¢ - .

Speedup (4P4L/4P8L)

0 0.005 0.01 0.015 0.02
Misses per Instruction

E T IR Embedded Software Research Division SIGPL 2005 14

4P8L Loop Selection

compile-time cost estimation ® Some loops may perform
better in 4P8L mode

m Cycles per instruction (CPI)
m Partially dependent upon

run-time cost estimation
(graduated instructions)

MPI
4PA4L loop selection = The bigger the CPI, the
(cache misses per instructions) higher the interference in a
single physical processor
4P8L loop selection m Small CPI - less intra-
cycles per instruction thread contention
V4P1L ?4P4L ;ESL ®m The decision run is in 4P4L
// 77 7 ® If the CPI in 4P4L
7 é v < CPlyeshoila Value, run it in
> 4P8L
Amount of work
E T IR Embedded Software Research Division SIGPL 2005 15

Most Recent with Timing(MRT)
m Uses the recent past behavior of a
loop to predict its future behavior

4P1L 4P4L 4P8L

Amount of work

m If # of graduated instructions
< I\Ithreshold
m 4P1L-4P4L MRT
m Otherwise, 4P4L-4P8L MRT

E T IR Embedded Software Research Division SIGPL 2005 16

compile-time cost estimation
(static cost estimation model)

run-time cost estimation
(graduated instructions)

4P4L loop selection
(cache misses per instructions)

4P8L loop selection
cycles per instruction

4P4L-4P1L adaptive execution
(graduated instructions)

E T IR Embedded Software Research Division

APAL-4P1L MRT

® On its second invocation,
time it in 4P1L

® Comparing the two
measurements, determine
its mode in the next
invocation

® For the remaining
invocations, time it again
and compare it to its most
recent execution time in the
other mode
4P1L 4P4L 4P8L

i 7

Amount of work
SIGPL 2005 17

compile-time cost estimation
(static cost estimation model)

run-time cost estimation
graduated instructions

4PA4L loop selection
cache misses per instructions

4P8L loop selection
cycles per instruction

4P4L-4P1L adaptive execution

4PA4L-4P8L adaptive execution

E T IR Embedded Software Research Division

APAL-4P8L MRT

® On its second invocation, it
is executed in 4P8L and
timed again

B The rest is similar to 4P4L-
4P1L MRT

4P1L 4P4L 4P8L

Amount of work
SIGPL 2005 18

4P8L Execution Time Estimation

compile-time cost estimation ® The larger the number of

static cost estimation model graduated instructions, the
higher the interference

between the two logical
processors
® L2 and L3 cache misses affect
. the performance significantly
4P4.L loop se_lectlon . m Estimate the time in 4P8L with
cache misses per instructions the measurements in 4P4L and
determine its mode

run-time cost estimation
graduated instructions

4P8L loop selection
cycles per instruction

4P1L 4P4L 4P8L
4P4L-4P1L adaptive execution %//////
(graduated instructions)
Z
4P8L execution time estimation Amount of work
IE T IR Embedded Software Research Division SIGPL 2005 19

Regression Analysis

} g L2 - £
Lapar = N ill;*lal-:rr, + b Ny + - Nyper, +d

Ngrst = a4 NEpd + o
N¢ |."I-r =a"?. N{ u L ph3
Nipse =a"" - Nipa, + b+
:._h”.'u'_ — _”:.I"'I-I' - ﬁ.-;f;'-l-:rr L b ”.l_.! . -""-il.n'-:l:lr

- al - Ny +a "J”"""' + b B o

T grad g ¢
—_ i} 'HJF'JL_JJ.HI-II Hl—l "I.II_II +i|I

E T IR Embedded Software Research Division SIGPL 2005 20

The Result of Regression Analysis

H Formulas ‘ I H
Tupsr, = 0.773- Nipt —23.258 - Nymy;, +393.006 - Nyp + 2293277 | 0.9994
NI = 1.000 - Nipy; — 760536 0.9999
Nips, = 3.206 - Ny, — 150422 0.9253
NES = 1623 NES,; - 15684 0.8905

Tupsr, = 0.773- N0 — 74573 Ny, +637.781 - Nyffy, — 960399 | -

E T IR Embedded Software Research Division SIGPL 2005 21

Evaluation Environment

® Implemented in a compiler preprocessor written in Perl
m Applications
m 10 highly parallel NAS and Spec2K benchmarks (FORTRAN 77)
m Parallelization information from Polaris
m Compilers
®m Intel Fortran compiler for Windows v8.0
m OS
= Windows 2003 Server
m Architecture
® 4 way Intel Xeon MP hyper-threading (1.5 GHz)
m Performance counter library
® Our own implementation using windows system calls
® Changing the # of threads
® OpenMP directives
m Windows system call to map threads to logical processors

E T IR Embedded Software Research Division SIGPL 2005 22

Adaptation Schemes

compilegtime cost fstimation
(static cost estimagion model)

run-timk cost estimation
(gradugted instructions)

4P4L Joop sglection

(cache misges perjinstructions)

4P8E Ioob sel{ction

cycles er instrigtion

APAL-4P1L MRT
ADP (graduated instructions) EST
— ——

4B -4PBL MRT 4P8L execution tiMesestimation

SIGPL 2005 23

E T IR Embedded Software Research Division

Speedup

OSequential(4P1L) m4P4L MW4PSL mStatic(4P4L) M Static(4PSL) MADP MEST

3.5

E T IR Embedded Software Research Division SIGPL 2005 24

Conclusions

programs for SMT multiprocessors

E T IR Embedded Software Research Division

B Presented performance estimation models and
techniques for generating adaptive execution code
for SMT multiprocessor architectures.

® Our code is about twice and eighteen times faster
on average than the original code executed on 4
and 8 logical processors, respectively

B Adaptive execution techniques are promising and
effective at speeding up shared-memory parallel

SIGPL 2005

25

