
1

서울대학교
SEOUL NATIONAL UNIVERSITY

SIGPL 2005Embedded Software Research Division 1

Adaptive Execution Techniques
for

SMT Multiprocessor Systems

Changhee Jung
Jaejin Lee

ETRI
Seoul National University

SIGPL 2005 2

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Outline

SMT multiprocessor architecture

Motivation

Adaptive execution strategies

Performance evaluation

Conclusions

2

SIGPL 2005 3

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

SMT Multiprocessor Architecture

Instructions from different threads execute in parallel
Identical instruction streams from multiple threads may degrade performance

Contend for the same functional unit

Commercially available: Intel Xeon SMP with hyper-threading

Memory

L3$

L2$

L1$

LP1LP0

Processor
Execution
Resources

L3$

L2$

L1$

LP1LP0

Processor
Execution
Resources

L3$

L2$

L1$

LP1LP0

Processor
Execution
Resources

L3$

L2$

L1$

LP1LP0

Processor
Execution
Resources

SIGPL 2005 4

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Our Goal & Approach

Improve the performance of
applications that contain conventional
loop-level parallelism

Avoid executing some parallel loops in
parallel

Dynamically change the number of
threads to run the parallel loops

3

SIGPL 2005 5

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Parallel Loop Overheads

Performance
Gain

Serialize the parallel loop that contains small work.

SIGPL 2005 6

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Parallel Loop Overheads (contd.)

We have to determine
execution mode(# of
threads) seriously.

4

SIGPL 2005 7

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Execution Environment

4P1L

Memory

L3$

L2$

L1$

LP1LP0

Processor
Execution
Resources

L3$

L2$

L1$

LP1LP0

Processor
Execution
Resources

L3$

L2$

L1$

LP1LP0

Processor
Execution
Resources

L3$

L2$

L1$

LP1LP0

Processor
Execution
Resources

4P4L4P8L Execution Mode

SIGPL 2005 8

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Adaptive Execution Framework

preprocessor
cost estimation

and
adaptation code

generation

parallel
program

machine
specific

parameters

adaptive
parallel
program

executable
image

compiler
for the SMT

multiprocessor

5

SIGPL 2005 9

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Adaptation Schemes

4P4L-4P8L adaptive execution 4P8L execution time estimation

4P4L-4P1L adaptive execution
(graduated instructions)

4P8L loop selection
(cycles per instruction)

4P4L loop selection
(cache misses per instructions)

run-time cost estimation
(graduated instructions)

compile-time cost estimation
(static cost estimation model)

SIGPL 2005 10

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

4P1L 4P4L 4P8L

Amount of work

Static Cost Estimation

Highly inefficient parallel
loops

A simple model
Wbody = Σ (# of each op * op_cost)
W = n*Wbody

If W < Wthreshold, run it
sequentially

Use heuristics to determine
Wthreshold

compile-time cost estimation
(static cost estimation model)

6

SIGPL 2005 11

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Determining Wthreshold

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2000 4000 6000 8000 10000 12000 14000
Compile-Time Estmated Cost

S
p
e
e
d
u
p

SIGPL 2005 12

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

4P1L 4P4L 4P8L

Amount of work

Run-Time Cost Estimation

The # of instructions
executed is
proportional to the
workload
W = the average
number of instructions
executed in each
iteration in the first
invocation
If W < Wthreshold, run it
sequentially in the
following invocations
Inefficient loops that
cannot be handled by
h d l

run-time cost estimation
(graduated instructions)

compile-time cost estimation
(static cost estimation model)

7

SIGPL 2005 13

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

4P4L Loop Selection

Loops that are heavily
effected by the cache
conflicts between two
logical processors

L2/L3 cache misses per
instruction (MPI)

High MPI in 4P4L →
high MPI in 4P8L

If MPI > MPIthreshold, run
it in 4P4L

4P4L loop selection
(cache misses per instructions)

run-time cost estimation
(graduated instructions)

compile-time cost estimation
(static cost estimation model)

4P1L 4P4L 4P8L

Amount of work

SIGPL 2005 14

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Determining MPIthreshold

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0 0.005 0.01 0.015 0.02
Misses per Instruction

S
p
e
e
d
u
p
 (
4
P
4
L
/4
P
8
L
)

8

SIGPL 2005 15

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

4P8L Loop Selection

Some loops may perform
better in 4P8L mode
Cycles per instruction (CPI)

Partially dependent upon
MPI
The bigger the CPI, the
higher the interference in a
single physical processor
Small CPI → less intra-
thread contention

The decision run is in 4P4L
If the CPI in 4P4L
< CPIthreshold value, run it in
4P8L

4P8L loop selection
(cycles per instruction)

4P4L loop selection
(cache misses per instructions)

run-time cost estimation
(graduated instructions)

compile-time cost estimation
(static cost estimation model)

4P1L 4P4L 4P8L

Amount of work

SIGPL 2005 16

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Most Recent with Timing(MRT)

Uses the recent past behavior of a
loop to predict its future behavior

If # of graduated instructions
< Nthreshold

4P1L-4P4L MRT
Otherwise, 4P4L-4P8L MRT

4P1L 4P4L 4P8L

Amount of work

9

SIGPL 2005 17

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

4P4L-4P1L MRT

On its second invocation,
time it in 4P1L
Comparing the two
measurements, determine
its mode in the next
invocation
For the remaining
invocations, time it again
and compare it to its most
recent execution time in the
other mode

4P4L-4P1L adaptive execution
(graduated instructions)

4P8L loop selection
(cycles per instruction)

4P4L loop selection
(cache misses per instructions)

run-time cost estimation
(graduated instructions)

compile-time cost estimation
(static cost estimation model)

4P1L 4P4L 4P8L

Amount of work

SIGPL 2005 18

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

4P4L-4P8L MRT

On its second invocation, it
is executed in 4P8L and
timed again
The rest is similar to 4P4L-
4P1L MRT

4P4L-4P8L adaptive execution

4P4L-4P1L adaptive execution
(graduated instructions)

4P8L loop selection
(cycles per instruction)

4P4L loop selection
(cache misses per instructions)

run-time cost estimation
(graduated instructions)

compile-time cost estimation
(static cost estimation model)

4P1L 4P4L 4P8L

Amount of work

10

SIGPL 2005 19

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

4P8L Execution Time Estimation

The larger the number of
graduated instructions, the
higher the interference
between the two logical
processors
L2 and L3 cache misses affect
the performance significantly
Estimate the time in 4P8L with
the measurements in 4P4L and
determine its mode

4P8L execution time estimation

4P4L-4P1L adaptive execution
(graduated instructions)

4P8L loop selection
(cycles per instruction)

4P4L loop selection
(cache misses per instructions)

run-time cost estimation
(graduated instructions)

compile-time cost estimation
(static cost estimation model)

4P1L 4P4L 4P8L

Amount of work

SIGPL 2005 20

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Regression Analysis

11

SIGPL 2005 21

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

The Result of Regression Analysis

SIGPL 2005 22

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Evaluation Environment

Implemented in a compiler preprocessor written in Perl
Applications

10 highly parallel NAS and Spec2K benchmarks (FORTRAN 77)
Parallelization information from Polaris

Compilers
Intel Fortran compiler for Windows v8.0

OS
Windows 2003 Server

Architecture
4 way Intel Xeon MP hyper-threading (1.5 GHz)

Performance counter library
Our own implementation using windows system calls

Changing the # of threads
OpenMP directives
Windows system call to map threads to logical processors

12

SIGPL 2005 23

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Adaptation Schemes

4P4L-4P8L MRT 4P8L execution time estimation

4P4L-4P1L MRT
(graduated instructions)

4P8L loop selection
(cycles per instruction)

4P4L loop selection
(cache misses per instructions)

run-time cost estimation
(graduated instructions)

compile-time cost estimation
(static cost estimation model)

ADP EST

SIGPL 2005 24

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Speedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

BT CG FT
MG SP

APPLU

HYDRO2D

MGRID
SW

IM

TOMCATV

AVERAGE

Sp
ee

du
p

Sequential(4P1L) 4P4L 4P8L Static(4P4L) Static(4P8L) ADP EST

13

SIGPL 2005 25

서울대학교
SEOUL NATIONAL UNIVERSITY

Embedded Software Research Division

Conclusions

Presented performance estimation models and
techniques for generating adaptive execution code
for SMT multiprocessor architectures.
Our code is about twice and eighteen times faster
on average than the original code executed on 4
and 8 logical processors, respectively
Adaptive execution techniques are promising and
effective at speeding up shared-memory parallel
programs for SMT multiprocessors

